A Duration Calculus with Infinite Intervals

نویسندگان

  • Chaochen Zhou
  • Dang Van Hung
  • Xiaoshan Li
چکیده

This paper introduces infinite intervals into the Duration Calculus [32]. The extended calculus defines a state duration over an infinite interval by a property which specifies the limit of the state duration over finite intervals, and excludes the description operator. Thus the calculus can be established without involvement of unpleasant calculation of infinity. With limits of state durations, one can treat conventional liveness and fairness, and can also measure liveness and fairness through properties of limits. Including both finite and infinite intervals, the calculus can, in a simple manner, distinguish between terminating behaviour and nonterminating behaviour, and therefore directly specify and reason about sequentiality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC ) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect ...

متن کامل

Expressive Completeness of Duration Calculus

This paper compares the expressive power of first-order monadic logic of order, a fundamental formalism in mathematical logic and the theory of computation, with that of the Propositional version of Duration Calculus (PDC), a formalism for the specification of realtime systems. Our results show that the propositional duration calculus is expressively complete for first-order monadic logic of or...

متن کامل

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

Semiring Neighbours

In 1996 Zhou and Hansen proposed a first-order interval logic called Neighbourhood Logic (NL) for specifying liveness and fairness of computing systems and also defining notions of real analysis in terms of expanding modalities. After that, Roy and Zhou presented a sound and relatively complete Duration Calculus as an extension of NL. We present an embedding of NL into an idempotent semiring of...

متن کامل

An Algebraic Semantics for Duration Calculus

We present an algebraic semantics for Duration Calculus based on semirings and quantales. Duration Calculus was originally introduced in 1991 as a powerful logic for specifying the safety of real-time systems. We embed the Duration Calculus into the theory of Boolean semirings and extend them to Kleene algebras and ω-algebras, respectively, to express finite and infinite iteration. This allows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995